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Andreev interferometry as a probe of superconducting phase correlations
in the pseudogap regime of the cuprates

Daniel E. Sheehy,* Paul M. Goldbart,† Jörg Schmalian,‡ and Ali Yazdani§

Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 6180
~Received 4 January 2000!

Andreev interferometry—the sensitivity of the tunneling current to spatial variations in the local supercon-
ducting order at an interface—is proposed as a probe of the spatial structure of the phase correlations in the
pseudogap state of the cuprate superconductors. To demonstrate this idea theoretically, a simple tunneling
model is considered, via which the tunneling current is related to the equilibrium phase-phase correlator in the
pseudogap state. These considerations suggest that measurement of the low-voltage conductance through
mesoscopic contacts of varying areas provides a scheme for accessing phase-phase correlation information. For
illustrative purposes, quantitative predictions are made for a model of the pseudogap state in which the phase
~but not the amplitude! of the superconducting order varies randomly, and does so with correlations consistent
with certain proposed pictures of the pseudogap state.
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I. INTRODUCTION

A range of experimental investigations have indicated t
underdoped high-temperature superconductors~HTSCs! ex-
hibit intriguing properties at temperaturesabovethe super-
conducting transition temperatureTc . Most notably, these
materials show a strong suppression in the single-par
electronic spectral weight at low energies, even at temp
tures far aboveTc ,1–3 a property referred to as th
pseudogap. A number of scenarios have been proposed
account for this loss of spectral weight,4–11 several of which
invoke the notion that remnants of superconducting corr
tions remain in the nonsuperconducting state,7–11 i.e., that
pairing is established locally but that it lacks the long-ran
coherence inphasenecessary for true superconductivity.

To make progress with understanding the nature of
pseudogap regime, having experimental access to thespatial
structureof the correlated electronic state is likely to be
considerable value.12–14 The aim of the present paper is
identify one possible scheme, involving low-voltage mes
copic conductance measurements, for probing this struc
experimentally, and to describe this scheme within the c
text of a simple theoretical model.

The basic idea is this. Let us adopt as a working hypo
esis the picture of the pseudogap regime in which superc
ductivity is established locally, but in which the presence a
motion of vortices in the superconducting order parame
cause the phase of the superconducting order parameter
randomized beyond certain correlation length and ti
scales.15 The effects of such phase fluctuations on the sing
particle properties of underdoped cuprates have been
plored in Refs. 16,17. Now, the low-voltage conductance
a normal-to-superconducting junction includes contributio
associated with the Andreev reflection of quasiparticles fr
the superconducting condensate~see, for example, Refs. 18
20!. What about the low-voltage conductance of a norm
to-pseudogap junction? Given the picture of the pseudo
regime outlined above, and assuming that tunneling thro
the junction occurs on a time scale faster than the time s
PRB 620163-1829/2000/62~6!/4105~9!/$15.00
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for vortex rearrangement, we anticipate that there will
contributions to the conductance due to the Andreev refl
tion of quasiparticles from thelocal superconductivity. How-
ever, owing to the phase sensitivity of the Andreev reflect
process,22 any spatial variation in the phase of the superco
ducting order parameter over the junction would tend
cause~diffractionlike! interference of the quasiparticle-ho
waves that have been Andreev reflected from the junct
and thereby diminish the associated contribution to the c
ductance.

Now suppose that the normal contact in a normal-
pseudogap junction has a characteristic linear dimensionL. If
L is smaller than the characteristic phase-phase correla
~i.e., intervortex! lengthjf ~e.g., the smaller contact in Fig
1! then, at any instant, rather little phase variation would
expected over the contact and the Andreev contribution
the conductance should be barely diminished. However,L
is substantially larger thanjf ~e.g., the larger contact in Fig
1! then considerable phase variation is expected over
contact, and the Andreev contribution to the conductanc
likely to be strongly suppressed. Measurements made usi
range of mesoscopic contact sizes21 thus have the capability
of providing a direct probe of the spatial correlations of t
phase of the superconducting order parameter at various
peratures within the pseudogap regime.

Let us emphasize that the concept of Andreev interfero
etry is by no means new; indeed, several groups have c
sidered this concept both theoretically23 and
experimentally.24 However, to the best of our knowledge th
interferometry has primarily been considered in contexts
which reflection is from a truly superconducting regio
~rather than from a pseudogap region!, and in settings in
which the phase has an average value that varies in a
tively simple way in space~such as on either side of a Jo
sephson junction!. Here, we are considering a setting
which the interferometry is being used as a probe of
superconducting fluctuations.

It should be mentioned that in recent work Choiet al.25

considered the issue of whether or not the zero-bias tun
ing conductance peak26 would survive at temperatures abov
4105 ©2000 The American Physical Society
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Tc . This work involves applying the BTK technique20 to the
physical picture of the pseudogap regime explored, e.g
Refs. 16,17. It amounts to a computation of the conducta
of a normal-to-superconductor interface for a d-wave sup
conductor in a uniform supercurrent-carrying state, this c
ductance then being averaged over a Gaussian distributio
uniform supercurrents~in order to model the pseudoga
state!. This yields a conductance dependent upon the sta
tical distribution of local values of the supercurrent arisi
from varying vortex locations. In contrast, the present wo
focuses on the spatial correlations of the phase in
pseudogap regime and, specifically, how such correlat
may be accessed experimentally.

II. TUNNELING CURRENT FOR A NORMAL-TO-
PSEUDOGAP JUNCTION

We now illustrate the ideas of Sec. I by computing t
conductance of a normal-to-pseudogap junction within
tunneling formalism, and show how this conductance
pends on the pseudogap phase-phase correlation functio
this end, we adopt as the tunneling HamiltonianHT ~Ref. 27!
between a normal state~N! and a pseudogap state~P!:

HT[ (
s56

E
P
d3r E

N
d3s~ t r ,sdr ,s

† cs,s1t r ,s* cs,s
† dr ,s!,

~2.1!

where the positions lies on the normal side of the junctio
and the positionr lies on the pseudogap side. The operat
cs,s ~or cs,s

† ) and dr ,s ~or dr ,s
† ) respectively annihilate~or

create! quasiparticles with spin projections on the normal

FIG. 1. Schematic depiction of an instantaneous configuratio
the superconducting phase in the pseudogap state~arrows!. The two
shades of gray indicate two possible~normal-state! contact areas on
the pseudogap~i.e., white! substrate. Whereas the smaller~i.e.,
darker! contact abuts a region of nearly uniform phase, the lar
~i.e., lighter! contact exhibits regions of considerably differin
phase.
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side ats and on the pseudogap side atr . We choose the
interface to be in the planez50 ~where$x,y,z% are Carte-
sian coordinates and$ex ,ey ,ez% are the corresponding bas
vectors! and, accordingly, decompose vectors such ass andr
into components parallel~e.g., s) and perpendicular~e.g.,
szez) to the interface so thats5s1szez and r5r1r zez .
This choice, together with the assumption that tunneling o
occurs locally at the interface leads us to assert that the
neling matrix elementst r ,s are given by

t r ,s5t0ad (1)~sz!d
(1)~r z!d

(2)~s2r!, ~2.2!

where a is a microscopic length scale characterizing t
thickness of the ‘‘active’’ layer for tunneling of particles an
t0 is the typical energy scale for this process.

Next, we compute the currentI (V) as a function of the
voltageV. To do this, we consider the expectation value
the tunneling current operator@2eQN ,HT#/ i\, where2e is
the electron charge:

2
ie

\ (
s56

E
P
d3r E

N
d3s~ t r ,sdr ,s

† cs,s2t r ,s* cs,s
† dr ,s!,

~2.3!

with respect to the full Hamiltonian for the system, i.e.,H
5HN1HP1HT , where HN/P is the Hamiltonian for the
normal/pseudogap side and2eQN is the charge operator fo
the normal side. In fact, it is convenient to obtainI (V) per-
turbatively in the tunneling amplitudet0a by applying the
Matsubara technique to the imaginary-time dependent
neling currentĨ (t1).28 The lowest-order term, which is o
order ut0au2, represents the normal~i.e. single-particle! cur-
rent. This contribution is suppressed at low voltages due
the presence of a gap at low energies on the pseudogap
The next-order contribution toĨ , which is of fourth order in
t0a, is given by

Ĩ ~t1!52
e

\
ut0au4 (

s i56
E

A )
j 51

4

d2r jE
0

b

dt2dt3dt4

3^Ttdr1 ,s1

† ~t1!dr2 ,s2

† ~t2!dr3 ,s3
~t3!dr4 ,s4

~t4!&P

3^Ttcr1 ,s1
~t1!cr2 ,s2

~t2!cr3 ,s3

† ~t3!cr4 ,s4

† ~t4!&N

3e2 ivd(t21t31t4)e2 iV(t11t22t32t4), ~2.4!

where ^•••&P/N indicates an equilibrium expectation valu
with respect toHP/N, andb measures the inverse temper
ture. Operators such ascr ,s(t) @or ds,s(t)# are interaction-
picture operators, i.e.,eK0tcr ,se2K0t ~or eK0tds,se2K0t),
whereK0[HN2mNQN ~or K0[HP2mPQP). Here,mN ~or
mP) is the chemical potential on the normal~or pseudogap!
side, andQN ~or QP) is the charge operator for the norm
~or pseudogap! side. The physical currentI (V) is given by
the imaginary part ofĨ (t1) after making the following ana-
lytical continuations:ivd→ i01, iV→eV ~i.e., the voltage
across the junction!, and2 i\t1→t ~i.e., the time!.

To apply Eq.~2.4! to the setting at hand, namely, one si
of the junction being normal and the other being in t

of
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PRB 62 4107ANDREEV INTERFEROMETRY AS A PROBE OF . . .
pseudogap regime, we shall need to evaluate the two t
particle Green function factors that feature in it, one for t
normal side and one for the pseudogap side. For the no
side, we assume that the corresponding two-particle Gr
function is factorizable into two single-particle Green fun
tions, i.e.,

^Ttcr1 ,1~t2!cr2 ,2~t2!cr3 ,2
† ~t3!cr4 ,1

† ~t4!&N ,

5GN~r1 ,r4 ;t12t4!GN~r2 ,r3 ;t22t3!, ~2.5!

whereGN(r,r8;t2t8)[^Tt cr,s(t)cr8,s
† (t8)& is the single-

particle Green function on the normal side. On the ot
hand, for the pseudogap side we adopt a model in which
pseudogap state is a superconductor that is ‘‘disordered’
a static pattern of vortices and characterized by astatic
phase-phase correlator. We do not require information c
cerning the dynamic phase-phase correlation function
cause we are assuming that the Andreev reflection proce
rapid, compared with the time needed for vortices to subs
tially rearrange the phase structure. To support this assu
tion, let us note that the time scale associated with Andr
reflection is of ordertAR;ja/vF , where vF is the Fermi
velocity of the incoming electron andja is the amplitude-
fluctuation correlation length~i.e., the Cooper-pair size! on
the pseudogap side. Then, by using the estimatesvF
'107 cm/s andja'1 nm ~typical for a HTSC! we find that
tAR;10214 s. The experiments of Corsonet al.29 indicate
that the vortex-pattern rearrangement time correspond
frequencies in the terahertz range~i.e., is of order 1029 s) so
that, at least as a starting point, we may neglect the dynam
of the vortices. Thus, we assume that quasiparticles incid
from the normal side effectively encounter, and are Andre
reflected by, a static pair potential that has a nonzero am
tude~except at the vortex cores, which are small! and a spa-
tially random phase. With this in mind, we characterize
pseudogap side by the anomalous Green function

FP~r ,r 8;t,t8![^Tt dr ,↓~t!dr8,↑~t8!&P

5 f 0~r2r 8;t2t8!ei „f(r1f(r8)…/2, ~2.6!

where the phasef(r ) varies randomly in space, and th
function f 0 is given by the value it takes in a convention
superconductor,30 i.e.,

f 0~r ;t!5E d3k

~2p\!3

1

b (
n52`

`

eivnteik•r /\S Dk

2Ek
D

3S 1

ivn1Ek
2

1

ivn2Ek
D . ~2.7!

Here,Ek @[Ajk
21Dk

2, with jk[(\2k2/2m)2m# is the exci-
tation energy in the pseudogap material andDk is the gap
amplitude. The Matsubara frequenciesvn are defined to be
vn5(2n11)p/b for integern. For the sake of simplicity,
we now focus on the case ofs-wave pairing and thus se
Dk5D.31 We approximate the two-particle Green functio
on the P side in Eq.~2.4! by making a Gorkov factorization
into the anomalous Green functionFP and its conjugate. In
principle, there will also be a contribution associated w
factorization into normal Green functions. However, the
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contributions are suppressed at low voltages, and thus
adequate to take for the current

Ĩ ~t1!52
2e

b
ut0au4E

A )
j 51

4

d2r j ei „f(r1)1f(r2)2f(r3)2f(r4)…/2

3 (
n52`

`

GN~r2 ,r3 ; ivn1 ivd1 iV!

3GN~r1 ,r4 ;2 ivn23ivd1 iV!

3 f 0~r12r2 ; ivn! f 0~r32r4 ; ivn12ivd!, ~2.8!

where the limitA indicates that the interface integrals a
constrained to the area of the contact between the N an
regions. Equation~2.8! may be expressed diagrammaticall
as shown in Fig. 2, where one-arrow lines denote norm
Green functions, two-arrow lines denote anomalous Gr
functions~and the straight line denotes the interface!. We see
that this contribution to the current involves the correlati
of an electron and a hole propagating on the normal s
mediated by the static random pair-potential on t
pseudogap side of the junction.

Equation~2.8!, which represents the leading contributio
due to Andreev reflection at an interface, may be consid
ably simplified in situations in whichja!jf ~i.e., the phase
order which we are interested in probing via Andreev refl
tion persists over length scales much larger than the
size!, which is not only the case for the usual NS interfa
setting but also for the present NP setting. To support
assertion, we obtain the ratio of these two length scales
examining the results of the Corsonet al.experiments on the
high-frequency ac conductivity of Bi2Sr2CaCu2O81d .29 Ac-
cording to the analysis of Corsonet al., in the pseudogap
state the ratio ofjf to ja is related to the vortex diffusion
time t via

S jf

ja
D 2

5
tV0

2p
, ~2.9!

whereV0 is a parameter determined by Corsonet al. to be
1.1431014 s21. From Fig. 4 of Corsonet al., we see that at
T575 K, t;10212 s, so thatjf

2 /ja
2;20.

The significance of the separation of the length scalesja
andjf in the present context follows from the fact that th
function f 0 has spatial rangeja. Thus, in Eq.~2.8! the spatial
integrations over the coordinates$ri% i 51

4 may be simplified
becausef 0 varies rather more rapidly in space than do t
other factors in the integrand. This allows us to make
approximation

FIG. 2. Diagram depicting the leading-order~in tunneling am-
plitude! phase-sensitive contribution to the current.
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f 0~r,iv!'d (2)~r!E
A

d2r8 f 0~r8,iv!

'd (2)~r!E
2`

` dkz

2p\
f̂ 0~kzez ,iv!, ~2.10!

where f̂ 0 is the ~three-dimensional! Fourier transform off 0
and kz is the momentum component perpendicular to
interface. By using this approximation, we obtain

Ĩ ~t1!52
2e

b
ut0au4 (

n52`

` E
A

d2r1EA
d2r2ei „f(r1)2f(r2)…

3GN~r1 ,r2 ; ivn1 ivd1 iV!

3GN~r1 ,r2 ;2 ivn23ivd1 iV!

3E dkz

2p\
f̂ 0~kzez ,ivn!E dkz8

2p\
f̂ 0~kz8ez ,ivn12ivd!.

~2.11!

Having derived Eq.~2.11!, an equation applicable to an
given realization of the phase fieldf(r) on the P side of the
interface, we conclude the present section by averaging
current over an as-yet-unspecified distribution of ph
fields. As discussed above, the time scale for the tunne
process is shorter than the time scale for phase rearra
ment. Thus, it is appropriate to proceed as we have, by
computing the current for a fixed realization of the pha
field, and then to construct the time-averaged current, a
aged over times longer than the phase rearrangement
by averaging the current over an appropriate~in this case,
equilibrium! distribution of phase fields. Denoting such a
eraging by @•••#, and introducing the appropriate phas
phase correlator

g~r12r2![@eif(r1)e2 if(r2)#, ~2.12!

we arrive at a formula for the time-averaged current@ Ĩ (t1)#,
i.e., Eq. ~2.11! but with the phase factors expi„f(r1)
2f(r2)… replaced byg(r12r2). For convenience, we ex
press the normal-side Green function in terms the co
sponding spectral functionA:

GN~r1 ,r2 ; ivn![E
2`

` de

2p

A~r1 ,r2 ;e!

ivn2e
. ~2.13!

Then we may perform the integrations overkz and kz8 ~by
converting them to energy integrals!, as well as the summa
tion over Matsubara frequencies. By performing the nec
sary analytic continuations and taking the imaginary part,
obtain an expression for the tunneling currentI (V) through a
mesoscopic interface between a normal metal and a mat
in the pseudogap state:

I ~V!5
e

\

p

8
ut0au4ñP

2E
A

d2r1EA
d2r2g~r12r2!

3E
2m

2eV1m

de
D2

D22~eV2e!2
$n~e22eV!2n~e!%

3A~r1 ,r2 ;e!A~r1 ,r2 ;2eV2e!, ~2.14!
e

is
e
g
e-

st
e
r-
e,

-

-

s-
e

ial

wheren(e)[@exp(be)11#21 is the Fermi distribution func-
tion and ñP @[m/(2p\2kF)

21 with kF being the Fermi
wavevector# is the one-dimensional density of states on the
side.

III. CASE OF CLEAN NORMAL-METAL CONTACT

A. General considerations

In this section we pursue the evaluation of Eq.~2.14! for
the case of a normal contact that is perfectly clean, in
sense that the spectral functionAC ~with the superscript C
standing for clean! has the form appropriate for a pure meta

AC~p;e!52pd (3)~ep2e!, ~3.1!

in which ep[p2/2m2m. The ~three-dimensional! Fourier
transform of this quantity is given by

AC~r ,r 8;e![E d3p

~2p\!3
AC~p;e!eip•(r2r8)/\, ~3.2a!

5
m

\2p

sin$A2m\22~e1m!ur2r 8u%

ur2r 8u
. ~3.2b!

By inserting this expression into Eq.~2.14!, and limiting our
attention to low temperatures~i.e., kBT!eV, with kB being
Boltzmann’s constant! and low voltages~i.e., eV!D),32 we
obtain an equation for the low-voltage conductance a
functional of the pseudogap phase-phase correlation func

I ~V!

V U
V→01

5
e2

\ Ut0kFa

4peF
U4

kF
2p

3E
A

d2r1EA
d2r2 g~r12r2!

sin2kFur12r2u

ur12r2u2
.

~3.3!

B. Illustrative example: BKT correlations

The main conclusion of Sec. III A is that the contributio
of Andreev reflection to the tunneling current is sensitive
spatial inhomogeneity of the superconducting phase, suc
is proposed to exist in the pseudogap state. For the purp
of illustration, we now examine a specific example of ho
the current enhancement due to Andreev reflection is incr
ingly suppressed, with increasing area, due to destructive
terference. In this example, we assume that the phase-p
correlations in the pseudogap state are adequately mod
by those associated with the Berezinskiı-Kosterlitz-Thoul
~BKT! theory of the two-dimensionalXY model.33–35 The
relevance of this theory to the cuprate materials~see, e.g.,
Ref. 7! originates in the fact that their pronounced plan
character causes the intermediate length-scale electr
structure to be characterized by two-dimensionalXY behav-
ior, which is expected to cross over to three-dimensionalXY
behavior only very close to the transition. In order to co
pute the current for this BKT scenario, we need a form
g(r). On length scales short compared with the phase-ph
correlation lengthjf , the functiong(r) approaches unity;
on length-scales long compared withjf , it exhibits expo-
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nential behavior.35 As we are only seeking an illustrativ
computation of the current, the exact details of this crosso
are unimportant, and thus we adopt the form

g~r!5e2uru/jf, ~3.4!

and we take the interface to have the shape of a disk
radiusL. Inserting Eq.~3.4! into Eq. ~3.3!, we see that the
low-voltage Andreev conductance per unit area through
interface has the form

I ~V!

pL2V
U

V→01

5GCf C~kFjf ,L/jf!, ~3.5a!

GC[
e2

\

kF
2p2

2 Ut0kFa

4peF
U4

3 ln~114kF
2jf

2 !, ~3.5b!

f C~kFjf ,L/jf![
2

p2ln~114kF
2jf

2 !

3E
1
d2x1E

1
d2x2

sin2kFLux12x2u

ux12x2u2

3e2ux12x2u(L/jf). ~3.5c!

Here, the subscript 1 indicates that the integrals are ta
over disks of unit radius. The prefactorGC is the limiting
value of the conductance per unit area in the limit of lar
interface area.@Note that GC vanishes for the case of n
phase coherence~i.e., kFjf50).#

One of our primary concerns is how the varying of t
interface size would provide information regarding the str
ture of the phase correlations; this information is contain
in the functionf C, which depends only on the dimensionle
quantitieskFjf and L/jf . For generic values of its argu
ments, the form off C can be determined only via numeric
integration; however, its behavior can be determined in v
ous physically relevant asymptotic limits. To begin with,
us assume that the phase correlations persist over le
scales that are long compared with the Fermi wavelength
the normal side~i.e., kFjf@1), and let us consider varyin
the interface size. For small interface sizes~i.e., kF

21!L
!jf), f C increases logarithmically withL ~i.e., f C
' ln kFL/ ln kFjf). In the opposite regime of large interfac
sizes, we expect that Andreev reflection will occur from
dependent ‘‘domains’’ of uniform phase~so that, e.g., the
doubling of the area should double the conductance!. Indeed,
for L@jf ,

f C'12
16kF

2jf
2

~114kF
2jf

2 !ln~114kF
2jf

2 !
S jf

pL D ~3.6!

for any value ofkFjf . Note the logarithmic dependence
f C ~and hence the current per unit area! on the contact sizeL,
which is appropriate given the nonclassical nature of t
mesoscopic contribution to the conductance.21

To study the behavior off C for intermediate values ofL,
we perform the integrals in Eq.~3.5c! numerically. In Fig. 3,
we show 12 f C as a function ofL/jf for the case of long-
range phase correlations~i.e., kFjf5100). Thus, as dis-
er
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cussed Sec. I, a series of mesoscopic conductance mea
ments involving a range of contact sizes is expected to
rather sensitive to the characteristic length scale of ph
correlations in the pseudogap state.

IV. CASE OF DISORDERED NORMAL-METAL CONTACT

A. General considerations

In Sec. III we investigated the conductance of a mes
copic normal metal-to-pseudogap junction for the case o
perfectly clean normal metal. We now address the issue
the sensitivity of the main result~i.e., that this conductance
contains information regarding the spatial extent of t
pseudogap-side phase correlations! to the assumption that th
contact is a perfectly clean metal.36 Specifically, we examine
how Eq.~3.3! is modified by the presence of disorder in th
normal-metal contact. As we shall see, in the presence
disorder the most significant contribution to the conducta
is associated with so-called Cooperon diagrams, fami
from the theory of the weak-localization corrections to t
conductivity of a disordered metal.37

As is conventional, we take the disorder to be due
uncorrelated pointlike impurities, which scatter the electro
elastically. Moreover, we assume that the dephasing len
Lf is long, compared to bothjf and the mean free pathl
~which characterizes the strength of the disorder and is
lated to the scattering timet via l[vFt). Although we are
focusing on situations in whichLf is larger than the interface
size,38 so that one expects substantial sample-to-sample fl
tuations~which may in fact be interesting to study!, we shall
restrict our attention solely to the disorder average of
current. Then, averaging the current in Eq.~2.14! over con-
figurations of the potential scatterers on the normal side
averaging that we indicate viâ•••&dis, we arrive at

^I ~V!&dis5
e

\

p

8
ut0au4ñP

2E
A

d2r1EA
d2r2 g~r12r2!

3E
2m

2eV1m

de
D2

D22~eV2e!2
$n~e22eV!2n~e!%

3^AD~r1 ,r2 ;e!AD~r1 ,r2 ;2eV2e!&dis, ~4.1!

FIG. 3. 12 f C ~i.e., the departure of the dimensionless Andre
conductance per unit area from its large-area limit! as a function of
the dimensionless size of the interfaceL/jf , for the case ofkFjf

5100 ~computed numerically!. For L much smaller thanjf , the
zero-voltage conductance per unit area is much smaller than
asymptotic value.
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where the superscript D refers to the disordered case.
disorder-averaged product of spectral functio
^AD(r1 ,r2 ;e)AD(r1 ,r2 ;2eV2e)&dis contains contributions
that extend over length scalesur12r2u much larger thanl.
These Cooperon contributions provide the mechanism for
transmission of the phase-sensitive information that wo
be probed in Andreev interferometry experiments involvi
a disordered normal-metal contact.

B. Semiclassical picture

Before deriving our result for the contribution of th
Cooperon tô I (V)&dis, we pause to motivate physically wh
this particular contribution is significant. In the context
weak localization, the Cooperon contribution to the cond
tance is usefully pictured in terms of constructive interf
ence of pairs of paths involving the scattering of electro
from impurities in reverse order.39 This interference tends to
‘‘localize’’ electrons, thus causing a reduction in conduct
ity. In the present context, however, the origin of the Coo
eron is slightly different. To see this, consider the amplitu

Arx
b̄a for an electron at positionx in the normal metal to

scatter from a sequence of impurities labeled by the indexa,
to Andreev reflect at the positionr on the interface, to then
scatter from the sequence of impurities labeledb̄, and finally
to return to the positionx. Then, the probability for an elec
tron leavingx and reflecting from the interface to return tox
as a hole is given by the squared modulus of the sum of s
amplitudes, i.e.,

P~x!5U(
ab̄r

Arx
b̄aU2

5(
ab̄r

(
a8b̄8r8

~Arx
b̄a!* Ar8x

b̄8a8 . ~4.2!

As is well known, the amplitudeArx
b̄a depends sensitively on

the specific realization of the disorder; thus, the right-ha
side of Eq. ~4.2! contains many terms that are disorde
dependent complex numbers. These contributions toP(x)
average to zero upon disorder averaging. However, amo
the collection of amplitudes there is a special subset desc
ing processes in which the hole, as it returns from the in
face tox, does so via the same collection of impurities v
ited by the electron on the outbound segment of
trajectory but in the reverse order. If we denote the revers
the sequence of impuritiesb̄ by the sequenceb then this
special subset consists of the amplitudesArx

aa ; these ampli-
tudes have the form ofreal numbers, regardless of the sp
cific locations of the impurities, except for a factor due to t
phase shift associated with Andreev reflection. To see t
consider, e.g., the left-hand pair of paths~electron and hole!
in Fig. 4. The electron path~full line! originates atx, scatters
from impurities at positions 1, 2, and 3, and then Andre
reflects as a hole. The hole then propagates back tox, scat-
tering from the impurities at positions 3, 2, and 1 befo
returning to the positionx. The dynamical phase acquired b
the electron as it propagates to the interface is canceled
phase of the opposite sign acquired by the hole. Thus,
amplitude for an electron atx to return as a hole atx depends
only on the phase of the condensate atr :

Arx
aa;eif(r ). ~4.3!
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Thus, one sees that the most significant contribution to
~4.2! is given approximately by

P~x!;(
r ,r8

ei „f(r )2f(r8)…, ~4.4!

and hence thatP(x) is sensitive to the nature of th
pseudogap phase-phase correlations, a sensitivity simila
that embodied in Eq.~3.3!.

C. Microscopic calculation

The explicit computation of the contribution of the Coo
eron directly follows the usual analysis found in the conte
of weak localization; following Rammer,37 we find that the
disorder-averaged product of spectral functions has the f

^AD~x,x8,e!AD~x,x8,e8!&dis

5
2p

\
nNE d3Q

~2p\!3
eiQ•(x2x8)/\$C~Q,e2e8!

1C~Q,e82e!%, ~4.5!

where the Cooperon propagatorC(Q,w)[(2 iv/\
1DQ2\22)21, the diffusion constantD[vF

2t/3 ~in three di-
mensions!, andnN@[kFm/(2p2\2)# is the normal-side den
sity of states. Inserting Eq.~4.5! into Eq. ~4.1! leads to the
expression

^I ~V!&dis5eUt0kFa

4peF
U4p2kF

3

2m E
A

d2r1EA
d2r2 g~r12r2!

3E
2mN

2eV1mN
de $n~e22eV!2n~e!%

3
D2

D22~eV2e!2
$C@r12r2 ,2~eV2e!#

1C@r12r2 ,2~e2eV!#%, ~4.6!

FIG. 4. Schematic depiction of two semiclassical trajectories
which an electron leaves positionx in the normal region (N), un-
dergoes multiple elastic scattering events, then undergoes And
reflection at the NS interface~horizontal line!, and then returns tox
as a hole via the same scatterers but in reverse order. Full~dashed!
lines represent electron~hole! trajectories; crosses represent imp
rity scattering potentials.
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where C(r,e) is the ~three-dimensional! Fourier transform
of C(Q,e).

To analyzê I (V)&dis we make two further simplifying as
sumptions. First, as in the clean case, we limit our atten
to low temperatures~i.e., kBT!eV), and thus we obtain

^I ~V!&dis'
e

\ Ut0kFa

4peF
U4 p\

4mD
kF

3E
0

2eV

de
D2

D22~eV2e!2

3E
A

d2r1EA
d2r2

g~r12r2!

ur12r2u

3e2A(\D)21ueV2euur12r2u

3cos$A~\D !21ueV2euur12r2u%, ~4.7!

where we have inserted the explicit real-space expression
the Cooperon. Second, by making the restriction to low v
ages~i.e., eV!D),32 we may in Eq.~4.7! replaceD2/@D2

2(eV2e)2# by 1. Furthermore, in the presence of disord
one has the natural length scaleLV[A\D/eV. At suffi-
ciently low voltages and small interface sizes,LV will be
much larger than typical values ofur12r2u, so that one may
expand to lowest order inL/LV , thus obtaining

^I ~V!&dis'
e2

\
VUt0kFa

4peF
U4 pkF

LF
2LV

E
A

d2r1EA
d2r2 g~r12r2!

3H LV

ur12r2u
1O~1!J , ~4.8!

whereLF[A\D/eF. Thus, as found in Sec. III for the case
a clean normal metal contact, the low-voltage conductanc
a disordered metal-to-pseudogap junction also contains
formation regarding the pseudogap phase-phase correl
function.

D. Illustrative example: BKT correlations

In this section we examine the area dependence of
low-temperature and low-voltage conductance of a dis
dered normal metal-to-pseudogap junction for the case
BKT correlations. As in Sec. III, we assume that phase c
relations decay in an exponential fashion, consistent with
BKT scenario. Our starting point is thus Eq.~4.8!, together
with the model of phase correlations given by Eq.~3.4!. By
considering theV→01 behavior of Eq.~4.8! we arrive at the
low-temperature conductance per unit area~for the case of an
interface having the shape of a disk of radiusL):

^I ~V!&dis

pL2V
U

V→01

'GDf D~L/jf!, ~4.9a!

GD[
e2

\ Ut0kFa

4peF
U42p2kFjf

LF
2

, ~4.9b!

f D[
1

2p2 S L

jf
D E

1
d2x1E

1
d2x2

e2ux12x2u(L/jf)

ux12x2u
. ~4.9c!

By evaluating the integrals in Eq.~4.9c!, we obtain
n

or
-

r

of
n-
ion

e
r-
of
r-
e

f D511S jf

L D H L1S 2L

jf
D2I 1S 2L

jf
D J ~4.10!

whereI 1 is a modified Bessel function andL1 is a modified
Struve function. The asymptotic behavior off D is linear for
small L @i.e., f D'(8/3p)(L/jf) for L/jf!1#; for largeL it
approaches unity as an inverse power ofL @i.e., f D'1
2(2jf /pL) for L/jf@1#. In Fig. 5 we show how this func-
tion crosses over between these two limits. As with the c
of the clean contact, the conductance shows marked sens
ity to the phase-phase correlations of the pseudogap sta

V. CONCLUDING REMARKS

In this paper we have proposed and explored theoretic
the possibility of using Andreev interferometry to probe t
spatial structure of the phase correlations in the pseudo
state of the cuprate superconductors. The viability of t
technique rests on the sensitivity of the tunneling curr
across mesoscopic normal-to-pseudogap junctions to sp
variations in the local superconducting order in t
pseudogap state, as well as the possibility of using juncti
having a range of areas. The picture of the pseudogap sta
which our approach directly applies is one in which pha
correlations extend over length scales that are consider
larger than the characteristic dimension of a charge-car
pair. If this is not the case then the intervortex spacing
comes comparable to the vortex core size, a substantial f
tion of the electrons tunneling from the contact encoun
vortex cores, and our formalism would have to be extend
to account for the associated variation of the amplitude of
superconducting order parameter.

By considering a simple tunneling model, we have est
lished a relationship between the tunneling current and
equilibrium phase-phase correlator characterizing
pseudogap state. We have considered the cases in whic
normal region~i.e., the contact! is either a clean or a disor
dered metal. In both cases, we have assumed that phas
herence length for quasiparticles on thenormal side is
greater than the contact size. If this condition is not m
then, throughout our results, the contact size must be
placed by the dephasing length.

Up to this point we have not paid any attention to the fa

FIG. 5. 12 f D ~i.e., the departure of the dimensionless Andre
conductance per unit area from its large-area limit! as a function of
the dimensionless size of the interfaceL/jf for the case of a disor-
dered normal-metal contact~computed numerically!. For L much
smaller thanjf , the zero-voltage conductance per unit area is mu
smaller than its asymptotic value.
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that the pairing state is, in all likelihood, d wave. Assumi
that this is indeed the case, there are certain additional
tors that may complicate the task of conclusively extract
information via Andreev interferometry. Specifically, the
complications are:~i! the presence of low-lying quasipartic
states near the nodes of the gap; and~ii ! Andreev bound
states,26 localized at the surface, arising from the sign chan
in the pair potential. Both complications lead to nonzero q
siparticle contributions to the current, and may obscure
contribution due to Andreev reflection. We propose tw
methods to circumvent these difficulties:~i! tunneling into
the antinodal direction, so as to minimize the magnitude
the contributions associated with the abovementioned c
plications and~ii ! separating the quasiparticle contributio
from the Andreev contribution via their characteristic te
perature dependences. Method~i! relies on the notion that by
choosing an experimental geometry such that the antin
direction is normal to the plane of the interface, electro
incident from the normal side will tunnel into a particul
‘‘cone’’ of momentum states in the pseudogap mater
Hence, the coupling to nodal states can be minimized. F
thermore, with this geometry, quasiparticle states that refl
specularly from the surface do not encounter a sign chang
the d-wave order parameter, and thus there are no Andr
bound states. Indeed, the experiments of Weiet al.40 have
found that by using a contact oriented normal to the a
nodal direction the contribution due to the Andreev bou
states is minimized. Method~ii ! makes use of the fact tha
nearTc , the quasiparticle contribution to the current vari
only weakly with temperature. In contrast, the Andreev co
tribution to the current is expected to increase sharply w
decreasing temperature~i.e., asT→Tc from above! because
the associated increase injf lessens the effects of destru
tive interference.
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Let us note, in passing, that we expect the results in
present paper to be at leastqualitativelyvalid for regimes in
which the tunneling barrier is small and, hence, the Andre
current through the interface is large. In such regimes,
contribution to the current due to Andreev reflection will,
fact, be much larger than the contribution from quasiparti
tunneling. However, to arrive at a quantitative theory for th
case one would have to extend the approach taken her
going beyond simple perturbation theory in the normal-
pseudogap tunneling amplitude.

To illustrate this Andreev interferometry proposal, w
have applied our general results to a simple model of
pseudogap phase-phase correlations, which is intende
mimic the BKT correlations relevant to certain proposed p
tures of the pseudogap state. Our considerations sugges
measurements of the low-voltage conductance of mesosc
junctions of varying areas between normal-state a
pseudogap-state regions would reveal information about
phase-phase correlations in the pseudogap state.
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